Germany
The unprovoked Russian war against Ukraine has resulted in an electric energy crisis in Europe, in particular in Germany. Because of the escalation between sanctions and gas deliveries, Russia on September 2 for an indefinite time shut down Nord Stream 1, the main pipeline for the natural gas deliveries to Germany. It triggered higher electricity prices not only in Germany but all the surrounding countries. The indefinite time was further extended on September 26 after both Nord Stream 1 and Nord Stream 2 pipelines ruptured after a series of explosions. Added to the serious concerns about exceedingly high electricity prices are now concerns in Germany for the coming winter about grid reliability, as well as for the ability to adequately heat buildings.
However, there is more to the story about the crisis than losing the Russian gas through the Nord Stream pipelines. Germany has been fortunate to be able to import substantial amounts of electricity when short on own generation, but this summer the availability of power to import has been reduced. France, normally the biggest exporter of power in Europe, has had more than half of their nuclear reactors offline due to routine maintenance or to evaluate the risks of corrosion problems. In addition, the record drought in Europe dropped the water levels in many large rivers, not least in France. It reduced the hydro generation as well as put restrictions on the output from some of the nuclear reactors in operation. (The latter is due to limitations of the amount of available/allowed cooling water.)
CONTINUE READING >>
Global warming is a global issue. Recognizing this fact, the international community, starting with the Earth Summit in Rio de Janeiro 1992, has tried to find a comprehensive global solution. Continuing through the Kyoto Protocol of 1997, the Paris Agreement in 2015 and the recently completed (2021) COP26 (the 26th UN Climate Change Conference) in Glasgow, there have been progress. However, the progress seems so far to be more of a deeper understanding of the problem and in setting ambitious targets than reaching a comprehensive solution with all nations committing to firm and specific actions to reduce emissions.
The problem not only remains but keeps growing. Carbon emissions continue to rise and accumulate in the atmosphere. Temperatures are inching up. Some countries have been successful reducing their emissions but taken together the greenhouse gas (GHG) emissions worldwide are increasing.
CONTINUE READING >>
Achieving “zero carbon emissions” (see footnote) without compromising safety and reliability, while keeping costs affordable, is not a trivial task. Countries that have succeeded or have come close are countries with a dominant portion of hydro power, for example Norway, Island, Costa Rica, Brazil, Canada. Also, countries like France and Sweden, with a mix of nuclear and hydro have achieved over ninety percent of zero emissions.
CONTINUE READING >>
Germany is the 4th largest economy in the world. Consequently, when Germany launched its Energiewende to transform its electric industry from fossil fuels to 80 % renewable by 2050, it got worldwide attention. If such a large economy could make this transformation and stay competitive as a nation, other large economies should also be able to follow.
Germany started out with trademark German determination. To make transformation even more aggressive, after the Fukushima nuclear incident, they decided in 2011 to exit all nuclear by 2022. Progress has been impressive. By 2015 renewable energy represented 31 % of all electric energy consumption.
If California was a nation, it would be the world’s 6th largest economy. In an executive order, B-30-15, the statewide goal was set to reduce greenhouse gas emissions 40 % below 1990 levels by 2030. As part of this goal California has set the ambitious goal to transform their electric consumption to reach 50% of renewables by 2030. At the end of 2015 renewable energy has reached 26 %. However, contrary to Germany this target does not include large hydro! Trying to compare apples and apples with Germany by including large hydro, California was well over 30 % of all electric consumption from renewables.
CONTINUE READING >>
“When you come to a fork in the road, take it!” was Yogi Berra’s way to give directions to his house. In his case he was right, since both roads led to his house. In the case of the German Energiewende it is not as clear what road to take and some roads may not even lead to the destination.
CONTINUE READING >>
In 2014 there were 3634 outages in the US electric system according to the Eaton Blackout Tracker. It affected in total over 14 million people. On average close to 4000 people were affected per outage, which on average lasted 43 minutes. 30 % of the outages were caused by weather and trees. 28 % were caused by faulty equipment and/or human error.
Almost all outages were at the distribution system level, Outages at the transmission level are very rare, but when they happen the consequences are bigger, affect more people and take longer time to restore. The Northeast Blackout in August 2003 hit 55 million people in United States and Canada. One month later the Italy Blackout had also about 55 million people in Italy, Switzerland, Austria, Slovenia and Croatia losing power. As recent as in March this year 90 % of Turkey with 70 million people lost their power. The largest blackout so far was in July 2012 affecting half of India and 620 million people. In fact the grid collapsed for a second time in two days.
The German Energiewende is the largest undertaking in the world to transition to renewable energy. Rightfully it is getting a lot of attention. There already many lessons to be learnt of what to do and also some of what not to do.
Smaller in magnitude but also well worth paying attention to are two American versions of Energiewende. One is a state, Hawaii, and the other is a city, Fort Collins, Colorado.
Lake Blåsjö, Norway.
Hydro storage is basically a renewable battery. Lake Blåsjö (“Blue Lake”) in Norway with a capacity of 7.8 terrawatthours (TWh) has become a symbol of Norway’s potential to become a “Blue Battery” for Northern Europe. To put the number in perspective 7.8 TWh would cover the electric consumption of over 750 000 residential homes. To accumulate the same amount of energy with lithium ion batteries it would take over 200 years of full production at Tesla’s planned Gigafactory.
Sunday August 18 Germany set a new renewable record. That day at 2 pm generation from renewable energy sources provided 75 % of all power needed to satisfy the total demand of electric energy.
Less noticed was that Burlington Electric Department, Vermont, in September with the purchase of a 7.4 MW hydroelectric facility achieved its goal of reaching 100 % from renewable energy.
While Germany’s August 18 record was a peak, Burlington’s 100 % is basically on a continuous basis.
What makes Burlington Electric’s achievement additionally impressive is that retail electricity rates in Burlington are less than half of the rates in Germany, 13.7 cents/kWh (time of use rate 2014) versus 36.25 cents/kWh (average 2013).