electric transmission

In most parts of the world, it takes time, a lot of it, to get the necessary permits to build a new transmission line. While few dispute the benefits of and need for more electric transmission, many oppose the lines to be built. The reasons can be several, but in most cases, it comes down to NIMBY (Not-In-My-Backyard).

Pacific Intertie, a breakthrough transmission system at its time, initially, 1969, with a capacity of 2500 MW. With subsequent expansions the 400 kV HVDC line and the two 500 kW HVAC lines can bring 7900 MW of predominantly hydro power from the Pacific Northwest to the Los Angeles area. Photo by the author.

The common denominator for transmission projects moving ahead is thorough planning and persistence in working with public opinion and permitting authorities. For individual projects creativity and unconventional approaches can be effective enabling the project to happen. Below are some ongoing projects worth watching and learning from.


On February 24 Russia started an unprovoked full-scale invasion of Ukraine. It has resulted in colossal damage and sufferings. How the war will end nobody knows, but it seems clear that Ukraine will remain a free, independent, and democratic nation, while Russia will achieve truly little, if anything of its goals.

The war in Ukraine will also have unintended and significant energy and environmental consequences in all Europe. For some countries there will be changes in the direction of their respective energy structures and plans. In other cases, the direction will remain unchanged, but the speed of change will accelerate.


Achieving “zero carbon emissions” (see footnote) without compromising safety and reliability, while keeping costs affordable, is not a trivial task. Countries that have succeeded or have come close are countries with a dominant portion of hydro power, for example Norway, Island, Costa Rica, Brazil, Canada. Also, countries like France and Sweden, with a mix of nuclear and hydro have achieved over ninety percent of zero emissions.


Energiewende, The German Energy Transition. In a 1954 the Atomic Energy Commission Chairman Lewis Strauss in a speech predicted that “It is not too much to expect that our children will enjoy in their homes electric energy too cheap to meter.” While later disputed whether the optimism was based on high expectations of fusion energy or on nuclear power in general, the phrase has stuck with critics of over-promises of not only nuclear energy but also of other “new technologies”.

If not “too cheap to meter” in 2004 the German Minister for Environment, Nature Conservation and Nuclear Safety, Jürgen Trittin, came close, when he (in)famously stated that the surcharge (“Umlage”) for the German Energy Transition (“Energiewende”) to renewable energy, primarily wind and solar, for a household would amount to “only around one euro per month, the price of a scoop of ice cream”.

The reality turned out differently. A German household has now (2018) some of the highest prices for electricity in Europe, 33.9 cents/kWh, including the surcharge for the energy transition. As a comparison the average retail electricity price (2018) in Europe is about 24 cents/kWh and in the United States is 13.9 cents/KWh.